The potential of BCG as vaccine against infection with COVID-2019 in the elderly

5.1.2e

Radboud University Medical Center, Nijmegen, the Netherlands

Aim

To assess whether BCG vaccination influences the susceptibility and severity of the infection with 2019 novel coronavirus (COVID-2019).

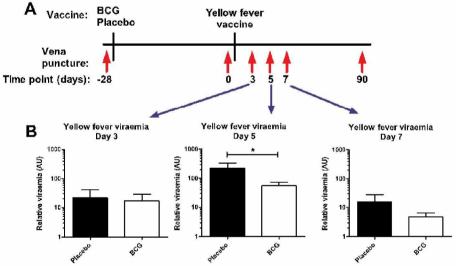
Rationale

Bacillus Calmette-Guérin (BCG) was developed as a vaccine against tuberculosis, but many studies have shown its ability to induce potent protection against other infectious diseases: the so called non-specific effects (NSEs)¹. In a combined analysis of three randomised controlled trials (RCTs) in low- birth-weight neonates in Guinea-Bissau, BCG reduced neonatal mortality by 38% (95% CI 17%-54%)². This was not due to protection against tuberculosis, which takes months to years to develop, but rather due to protection against neonatal sepsis and respiratory tract infections³. NSEs of BCG are not limited to children, as a recent study in adolescents has shown a 70% decrease in the incidence of respiratory tract infections in individuals vaccinated with BCG compared to placebo⁴. In addition, a small Indonesian trial has shown that consecutive BCG vaccination for 3 months reduced the incidence of acute upper tract respiratory infections by 80% (95%CI=22-95%)⁵.

We have demonstrated that the non-specific beneficial effects of BCG vaccination are due to epigenetic and metabolic reprogramming of innate immune cells such as myeloid cells and NK cells, leading to an increased antimicrobial activity, a process termed 'trained immunity'⁶. In experimental studies, BCG has been shown to protect not only bacterial and fungal infections, but against viral infections such as influenza as well⁷. To assess whether this effect is exerted in humans as well, we recently performed a study in which placebo or BCG vaccinated individuals were administered yellow fever vaccine virus as an experimental model of viral infection. BCG vaccination resulted in a significantly reduced viremia, and improved anti-viral responses Figure 1⁸.

Hypothesis

Based on the capacity of BCG to: i. reduce the incidence of respiratory tract infections; ii. exert antiviral effects in experimental models; and iii. reduce viremia in an experimental human model of viral infection, we hypothesize that BCG vaccination may induce (partial) protection against susceptibility to and/or severity of COVID-2019 infection.


Approach

Randomized clinical studies of BCG vaccination in the elderly.

In areas in which there is ongoing active spread of the virus, we envisage a randomized study of placebo/BCG vaccination in elderly individuals, who represent an important population at risk:

- Elderly individuals above 70 years of age
- 1:1 randomization of BCG vs placebo
- 30% reduction in the incidence of respiratory tract infections by BCG vaccination
 - Two groups of elderly individuals can be targeted:
 - o Study 1: Healthy elderly 70+ years old
 - Study 2: Elderly population in nursing homes
- For each of the two studies, with 300-400 patients/arm, a budget between 500 600 kE would be needed:
 - o Medical and lab personnel
 - o Costs of BCG vaccines
 - o Laboratory tests

Figure 1. A. Healthy volunteers were injected with either placebo (n=15) or BCG (n=15). One month later all volunteers were injected with yellow fever vaccine. B. Viremia was assessed on day 3, 5 and 7 after yellow fever vaccination by PCR in the blood. BCG vaccination significantly decreased the viremia in the circulation⁸.

References

1. Benn CS, Netea MG, Selin LK, Aaby P. A small jab - a big effect: nonspecific immunomodulation by vaccines. Trends Immunol 2013;34:431-9.

2. Biering-Sorensen S, Aaby P, Lund N, et al. Early BCG-Denmark and Neonatal Mortality Among Infants Weighing <2500 g: A Randomized Controlled Trial. Clin Infect Dis 2017;65:1183-90.

3. Hollm-Delgado MG, Stuart EA, Black RE. Acute lower respiratory infection among Bacille Calmette-Guerin (BCG)-vaccinated children. Pediatrics 2014;133:e73-81.

4. Nemes E, Geldenhuys H, Rozot V, et al. Prevention of M. tuberculosis Infection with H4:IC31 Vaccine or BCG Revaccination. N Engl J Med 2018;379:138-49.

5. Wardhana, Datau EA, Sultana A, Mandang VV, Jim E. The efficacy of Bacillus Calmette-Guerin vaccinations for the prevention of acute upper respiratory tract infection in the elderly. Acta Med Indones 2011;43:185-90.

6. Netea MG, Joosten LA, Latz E, et al. Trained immunity: A program of innate immune memory in health and disease. Science 2016;352:aaf1098.

7. Spencer JC, Ganguly R, Waldman RH. Nonspecific protection of mice against influenza virus infection by local or systemic immunization with Bacille Calmette-Guerin. J Infect Dis 1977;136:171-5.

8. Arts RJW, Moorlag S, Novakovic B, et al. BCG Vaccination Protects against Experimental Viral Infection in Humans through the Induction of Cytokines Associated with Trained Immunity. Cell Host Microbe 2018;23:89-100 e5.