COVID-19 VE among hospitalised SARI patients

Expert meeting Epiconcept 29 January 2021

Background

COVID-19 VE among hospitalised SARI patients

- Some European countries established severe acute respiratory illness (SARI) surveillance during the COVID-19 pandemic
- This protocol focuses on *existing SARI surveillance systems* to measure VE
- SARI surveillance can be/has been adapted to include SARS-CoV-2
- SARI VE protocol developed for the I-MOVE-COVID-19 network*

 basis for WHO/Euro SARI VE guidance document adapted for LMICs
 same protocol as starting point for ECDC-funded sites?

Funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101003673

Objectives

Primary objective

To measure overall and **product-specific** vaccine effectiveness (VE) against laboratory-confirmed SARS-CoV-2 infection among hospitalised SARI patients

 $_{\odot}$ for each site individually and pooled across all participating sites

Secondary objectives (pooled multicentre study)

- 1. To measure VE in hospitalised SARI patients against PCR+ SARS-CoV-2 by
 - \circ sex, age group
 - o risk group (e.g. specific chronic conditions)
 - vaccination target groups
 - \circ vaccine dose (one vs two), where applicable
 - \circ time since vaccination, between doses and regularly over calendar time

Δ

Objectives

Secondary objectives

- 2. To measure VE in hospitalised SARI patients against
 - $\circ\,$ clade/genetic variant if feasible
 - o more severe outcomes (ICU admission, invasive ventilation, in-hospital mortality)
- 3. To identify the role of potential factors that may modify VE
 - $_{\rm O}\,$ chronic conditions
 - $_{\odot}\,$ influenza vaccination
 - o statins or other long-term medications
 - o severity (oxygen support/intubation/assisted ventilation, ICU, in-hospital death)
 - o setting (e.g. long-term care facilities)

Objectives: WHO/Euro guidance document

• Same as for I-MOVE-COVID-19 protocol, except

\circ no pooling

- o includes non-pharmaceutical interventions as risk exposure variables
 - mask use
 - hand hygiene
 - social distancing
 - pandemic perception

Methods

- Hospital-based, test-negative, case-control design
- Study population

Individuals hospitalised with SARI symptoms in participating hospital with no vaccine contra-indication

Initially: those belonging to vaccination target group(s)

Methods

Possible SARI case definition*

a hospitalised person with **at least one** of the following symptoms: cough, fever, shortness of breath, **or** sudden onset of anosmia, ageusia or dysgeusia

- If possible all SARI patients should be tested for SARS-CoV-2 within 48 hrs of admission
- Confirmed case

PCR test positive within 48 hrs of admission $\mathbf{or} \leq 14$ days prior to hospital admission

Control

PCR test negative within 48 hrs of admission and within 14 days prior to admission (if tested)

Note: SARI patients may optionally be recruited with onset up to 14 days prior to admission, as these can be excluded from primary analyses, but will be included in sensitivity analyses.

*ECDC possible COVID-19 case definition: https://www.ecdc.europa.eu/en/covid-19/surveillance/case-definition 7

Methods: WHO/Euro guidance document

• All the same as I-MOVE-COVID-19 protocol except

- WHO/Euro guidance only offers WHO case definition
 - a hospitalised person with acute respiratory infection, with
 - a history of fever or measured fever of \geq 38 C°

and cough

• with symptom onset within the last 10 days

Where a minimum of 24 hours in-hospital is required to be considered hospitalised

- I-MOVE offers both case definitions
- WHO/Euro: VE covered under SARI surveillance a consent inherent
- $_{\odot}$ guidance document includes draft proposed questionnaire
 - I-MOVE provides list of minimum variables

WHO SARI case definition: https://apps.who.int/iris/bitstream/handle/10665/333912/WHO-2019-nCoV-Surveillance Case Definition-2020.1-eng.pdf?sequence=1&isAllowed=y

Methods

• Exposure: vaccination

- o depends on the vaccine (# doses; # days since vaccination)
- \circ vaccine product

importance of good quality data collection: date of vaccination, brand, batch

Outcome

 \circ RT-PCR

o laboratory-confirmed SARS-CoV-2 in patients hospitalised with SARI symptoms

9

• if possible, by genetic variant

Sample size estimations (crude analysis)

- Assumptions/criteria
 - $_{\odot}\,$ case to control ratio 1:1
 - vaccine coverage 80% in source population*
 - $_{\odot}~$ OR between 0.1 and 0.5

Precision to lower Cl boundary	Controls/ case	Detectable OR	Vaccine coverage in source population/ controls	Number of cases	Number of controls	VE	СІ
0.1	1	0.1	0.8	89	89	90	80-95
0.1	1	0.2	0.8	241	241	80	70-87
0.1	1	0.3	0.8	477	477	70	60-78
0.1	1	0.4	0.8	808	808	60	50-68
0.1	1	0.5	0.8	1242	1242	50	40-58

*For VC 30–50%: sample size is higher for the lower VE estimates and slightly lower for the 50–60% VE estimates. 10

Effect modifiers / confounding factors

- Demographic (age, sex, ethnic group)
- Pre-existing chronic conditions
- Clinical (medications, severity of underlying condition)
- Smoking status
- Previous vaccination
 - \circ influenza, pneumococcal vaccines
- Previous SARS-CoV-2 infection
- Antivirals prior to swabbing
- Functional impairment/frailty

Effect modifiers / confounding factors

- Socioeconomic status/deprivation
- Time from onset to hospitalisation
 - $_{\odot}$ test-negatives: late presenters?
 - o more severe disease: late presenters?
- Risk-taking behaviour/exposure
 - o no social distancing, no/inappropriate mask use, vaccine-averse
- Setting
 - $_{\odot}$ long-term care facilities

Exclusions

- Refusal; cannot communicate/give consent
- Vaccine contraindications
- Cannot be swabbed (septum deviation/obstruction, etc.)
- History of hospitalisation: previous 14 days to admission o easy to collect?
- Onset to hospitalisation delays: to be addressed in sensitivity analyses

 □ I-MOVE-COVID-19 surveillance data show 89% hospitalised ≤ 14 days

■ 0–4 days:	39%
■ 5–9 days:	33%
10+ days:	22%
In-hospital onset:	5%

Exclusions/stratifications in sensitivity analyses

- Varying delay (in days) for exclusion, between

 onset and admission
 - \circ onset and swab
 - $\circ\,\text{vaccination}$ and onset
- Positive to seasonal coronavirus (other respiratory viruses?)
- Nosocomial exposure

 # days in hospital: >8 days for suspected; > 14 days for confirmed?
- Those who received antivirals within xx days of swabbing
- Extreme frailty
- Controls with suggestive CT, or positive within 3 months before admission

Potential biases: TND controls

- Is this a good control group?
 - o represent VC in the population giving rise to SARI-positive cases in target group(s)?
 - $_{\odot}$ PCR sensitivity decreases over time
 - if severe cases hospitalised later: misclassified as controls if test-negative?
 - $_{\odot}$ CDC: non-SARI hospital patients as second control group
- Controls more likely to have indication for COVID-19 vaccine

 minimise by collecting data on chronic conditions (for adjustment)
- Previous infection (symptomatic/asymptomatic) among controls

 what if previous infection was unknown/unconfirmed?
 - "probable" prior infection (dry cough, fever, anosmia, close contact)?
 sensitivity analyses: range of scenarios botain effect on VE
- Effect of vaccine on other respiratory viruses (adenovirus, etc.)?

Potential biases/challenges

- High-risk groups: more likely to be vaccinated (and hospitalised with SARI)

 initially will be the focus (but target groups may differ by country?)
 stratify by target groups
- "Extreme frailty": less likely to be vaccinated

 sensitivity analyses: excluding those who are extremely frail
- Influenza-positive cases: less likely to have been vaccinated?

 co-infections more severe COVID-19 disease
 sensitivity analyses: excluding influenza-positive cases
- Hospital sites becoming dedicated COVID-19 hospitals $_{\odot}$ only cases; no controls

Other potential issues

- Medications for chronic conditions

 statins, ACE inhibitors, etc. : included as optional
- Occupation, SES, deprivation: optional
- Risk-takers (less likely to be vaccinated; more likely to be exposed?)

 how to account for this bias (no such questions included)?

 - sub-studies on mask use, efforts to social distance, pandemic perception

Discussion

- Issues with the test-negative design
 - \circ representative controls?
 - $_{\circ}$ PCR sensitivity lower over time: misclassification of cases as controls?
 - standardisation of PCR?
 - adjustment for test performance?
 - o second control group (disease-free: ER, hospital, community*)?

• How to minimise biases?

- \circ previous COVID-19, co-infection with influenza
- co-morbid conditions (medication?)
- \circ risk-takers
- \circ frailty, severity
- $_{\circ}\,$ time between onset and admission
- \circ setting

• Have we missed anything?

*Patel et al., Postlicensure evaluation of COVID-19 vaccines, JAMA 2020; 324(19):1939-1940

18